
HYDROFLUX GENERATOR

HARNESS THE HIDDEN POWER OF WATER

HYDROFLUX GENERATOR Plan's

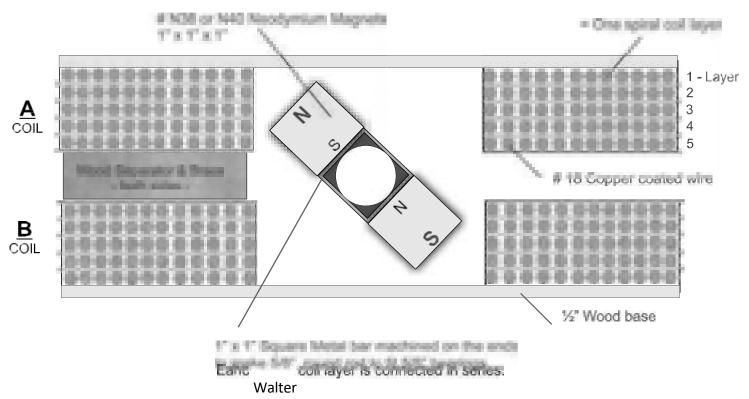
The use if magnets as an example only

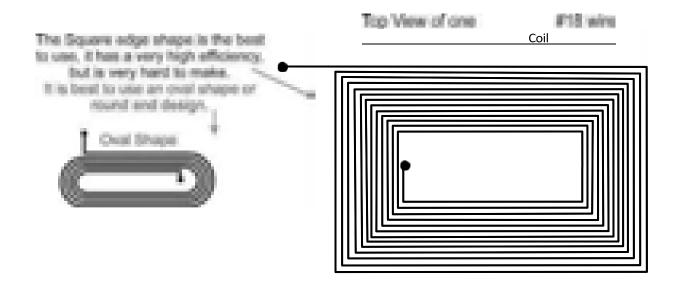
This is a cut away view of our HIDEOFLUX GENERATOR

WARNING! - NOTICE!

This demander can output high voltages as seel as high amperages, if you make skin contact with the Generator output (diet)

High Voltage can kill always wear rubber gioves, rubber shoes, rubber or plastic lab oues as well as eye protection. Label high voltage parts and work area with a High Voltage warning signal Once your Generator is complete, encase it in a safe housing.


Encase all electrical parts. Since you are building a high voltage **Generator** to a professional job! Do not be sloppy.



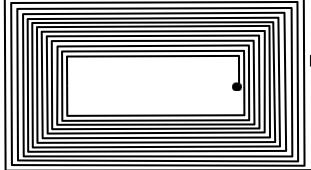
Generator can have a box housing as well as a cylinder housing. Simply use plywood. Just like our fueless engine model.

HIDEOFLUX GENERATOR Plan's

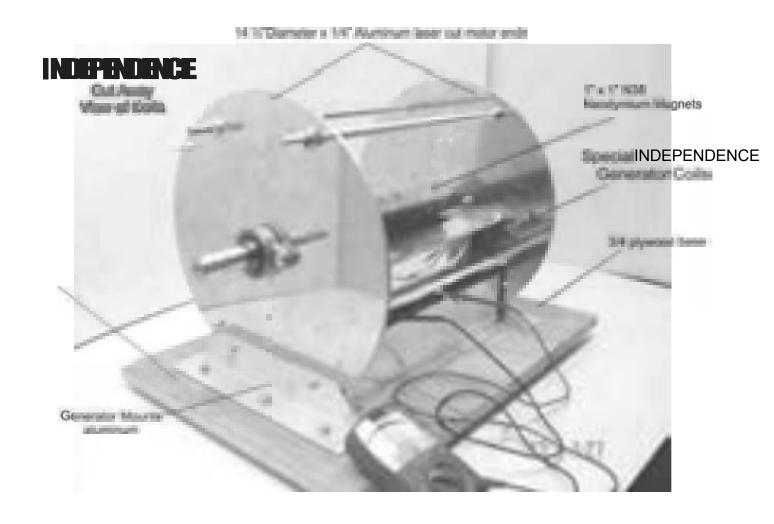
This is a cut away view of our HIDEOFLUX GENERATOR

Our New INDEPENDENCE Technology

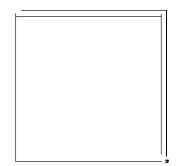
These plans are for your eyes only, (excluding Family members and those who may want to help you build this device.) This device uses a new discovery which we discovered more than 2 to 3 years ago



The INDEPENDENCE


The Generator housing can be made using wood, or a square wood box or as seen here using laser out 1/4" aluminum ends.

#15 copper coated wire Layered like pancakes?


INDEPENDENCE Coil Technology Very High Efficient

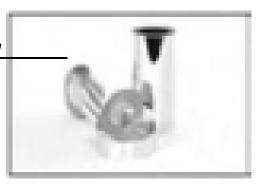
My special spiral coil designs play a very important part in this Generator. I like to consider these plans unlike any other set of plans you may have purchased in the past. Use these plans to build a working prototype but use there also as a building block to discover and research new and better ways to build this Generator!

Orgone energy motor

- 1. PVC Sheeting 114" x 4 foot x 4 foot (White) Supply Sources: Sign and or Screen printing shops near you. Internet. Sign supplies, screen printing supplies.
- 2. PVC Sheeting 1/8" x 4 foot x 4 foot (White) You can cut PVC with a sharp matt knife and a metal strait edge or metal ruler. Can also be cut using a fine table saw cutting blade.
- 3. QTY-1 6 to 10 lb spool of cower coated wire.
 Or sometimes called magnetic wire._ size #18AWG
 Supply Sources:Internet, (use search engines)
 MWS WireIndustires CA. 818-991-8553
 - * This wire is for the spiral generator coil. Pm:ntl'mdiq EIS Wire Company Louisville,KY 502-636-0384

Alphacore.com or Reawire.com

Or Optional: Aluminum Tape

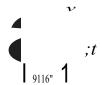

4.

Oty-3 WoodNuts 1/4"

4a. Qty-8 Wood Screws or **dry** wall type 2 1/4" L

 3M Spray Adhesive or other.
 Must spray onto surface thick and very sticky.
 Supply Sources:Local Art Supply stores, Internet, Hardware stores.

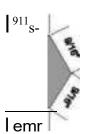
 6. PVC Glue Supply Sources:Hardware stores, Internet, Plumber supplies.

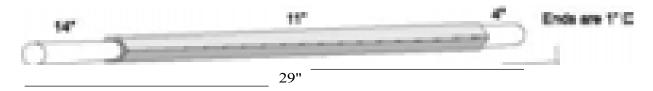

7. Qty-1 Lazy Susan Metal, ball bearing type. Supply Sources: Hardware stores, Internet, AceHardware.com

8. Qty-1 16" diameter plywood, 3/4"thick Supply Sources:Lumber yards, Laser wood cutting companies.

- 9. Qty-1 Aluminumtape 2" Supply Sources:Hardware stores, Internet.
- 1O. Qty-1 Hex Bar Cold Steel 9/16" or ¥.!" across each flat

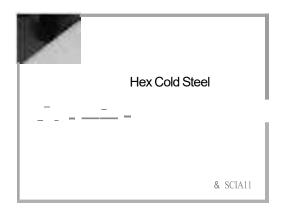
Cut to 29" length. Do not use Aluminum! Supply Source: Small Parts Inc. Www.SmallParts.com or call 1-800-220-4242

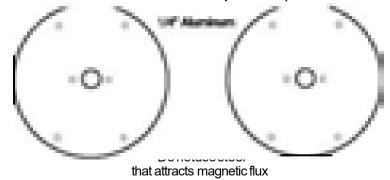



NOTICE: Optional 1" Hex Bar would be better and easier to place the 1"N38 Neodymium magnets on. That would be 1" across each flat. If you did decide to use 1" Hex bar you would need to resize the PVC Bobbin in these plans. The center of bobbin

would need to be wider. Or Option 2: Use 1"x 1" Square bar as seen on page 1

11. Qty - 24 steel bolts 8-32 x 7/8" or 1" long, you will need nuts and washers as well. Use lock washer on the brushes.


12. Hex Bare
You will then need to get a machine shop to turn the ends for youto 1" D (Should only cost about \$25-\$50)


Again do not use aluminum Hex, must be steel, Once magnets are in place the entire rod will become like one big powerful magnet!

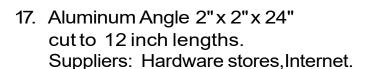
13. Generator ends

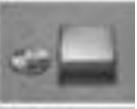
Must be aluminum, hard plastic (N Ion 6/6 smallparts.oom) or wood.

14 W' Diameter x 1/4"or upto Y.i" thick. Center hole is 1.125" Diameter or we could say 1118"D. This hole is for the rotor hexbarto go through which will be 1"indiameter and for the 1" Bearing(s). The top holes are for the long steel bolts. And the bottom holes are for the aluminum angle support

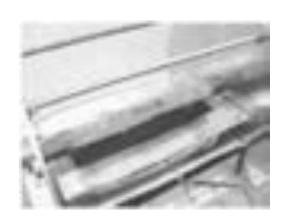
14. 2 Way Carpet Tape Supplier: Hardware Stores, Internet.

15.2-ton DEVON 2 part Epoxy


Suppliers: Hardware Stores Internet, www.Texaswoodcarvers.com 2 - 9oz bottles



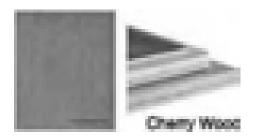
16. N38 Neodymium Magnets QTY- 48 1" X 1_"X 3/8" thick


Suppliers: Internet, www.Kjmagnetics.com

Page 8

2 x 4 wood cut 2 pieces to 13 Y2" and 2 pieces to 5" Supplier: Lumber yards, Hardware stores. (Notice: USA 2 x 4's are actually 1.5" x 3 3/8" in size). This will be used to make a bottom support base for your Generator coil. 19. QTY-2 Flange bearings for rotor and Generator end: Supplier: Internet, Grainger.com ,Hardware stores If Hardware stores do not have it they can order it. 19-A. 1" Split Tapper Bushing or 1" Coller for flywheel. 20. Steel long bolts Qty-2 coarse thread 7/16" x cut 7/16" x cut to 18.75" long 21. Steel Nuts........Qty-8 7/16" coarse thread 22 Steel washers.Qty-8 7/16" 23. Steel Lock washers.....Qty-4 7/16" Or 24. Steel Carriage bolts coarse thread Qty-4 5/16" 5/16" 25. Steel Nuts coarse thread.........Qty-4 (\S) 5/16" 26. Steel washersQty-4

27. Steel Bolts coarse thread.......Qty-6

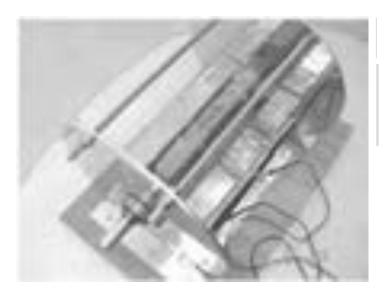

28.

1/4" x 1%" L w/ nuts & washers

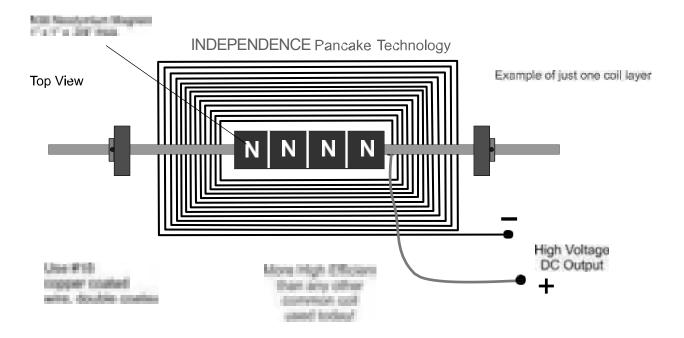
1/4" x 1" L w/nuts & washers

27. Plywood Generator base: 16 %" x 24" x 3/4" thick. Suppliers: Lumber yards, Internet.

It is best to attach a sheet of 1/8" aluminum to the top of the plywood board, this helps collect free energy. (hard to explain) Connect the aluminum sheet to the wood using wood screws.



28. Thick Copper Foil Adhesive tape for output contacts


29. Sodering Gun and Solder to solder contacts.

Generator coils use #18 Gauge Copper coated wire for the spiral coils! The bottom coils are B the top coils (Not shown) is A.

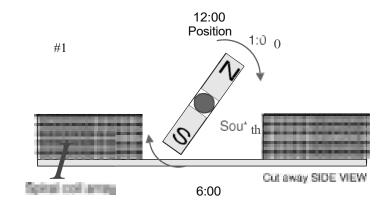
The above drawing is an example of just one spiral coil layer. The coil is very high efficient! By stacking many coils one on top of the other and connecting them in series you will greatly multiply the Voltage and Amperage-output! These are very powerful generator coils. Extremity High Efficient! Premiumory

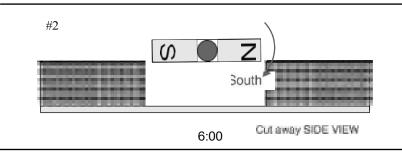
Again, this will be very time consuming but it will be well worth it. The above spiral coil drawing is just an example, there is no spaces in between the wires. The coating on the wire will act as the separator. The above shape is perfect and will give you the best results but is hard to make. It is much easier to make long oval shape spiral coils.

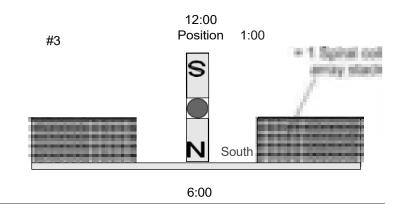
You will need 1/4" in A foot by A foot sheet of PAC, 1 You will not use that much just for one footbin but you may east, to make more footbine later and experiment with different code for fun.) You can low PAC sheeting at any Local eight or screen printing shop in your area or if you can not get it fleers exactly the internel for PAC augustes or eigh supply companies. Oheck your boat often took first. You must use PAC, you can not use fitted or four tournam. You will also need Oly 1. 10 th spoot of PAS gauge organic coated wire, (Ohecks coated) you can also find this on the internel as soil search for oppose coated wire, led them you need it for a magnetic generator. You may have oppose wire suppliers in your boat area, if you can't find then in your phone book check with a local electric closer repair strep in your area and they can self you oppose wire or left you can box some. You will also receil a large spray can if 28f aprays atherway self-and self-your flow in your phone to give self-your place of your PAC page. You will also need to guest along the fleenant to the internel, the give is considered to give to give all your PAC bottom on or you can incide it life by little write you turn and place the one onto the PAC bottom have A small motel Lary Susan write great for this use a mount 31° physical board and attach the Lary Susan to the bottom of the board. Applications come carries them. Metal ball bearing type.

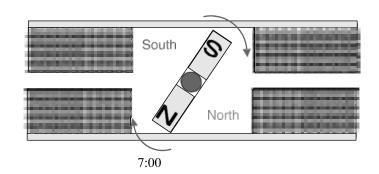
Generator Operation

Basic Generator Operations

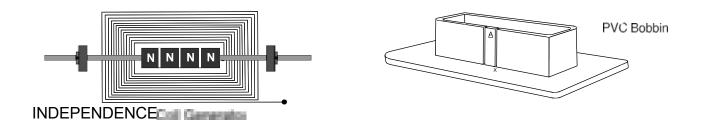

When the north pole N of the rotor magnet is pointing toward the 1:00 position and begins to turn within the spiral coil it creates a very high voltage generator effect into the front Emf and the Back Emf of the Generator Coils.


The voltage output and the amperage output depends on the size of wire being used, the number of spiral coil layers and the magnet rotor speed.

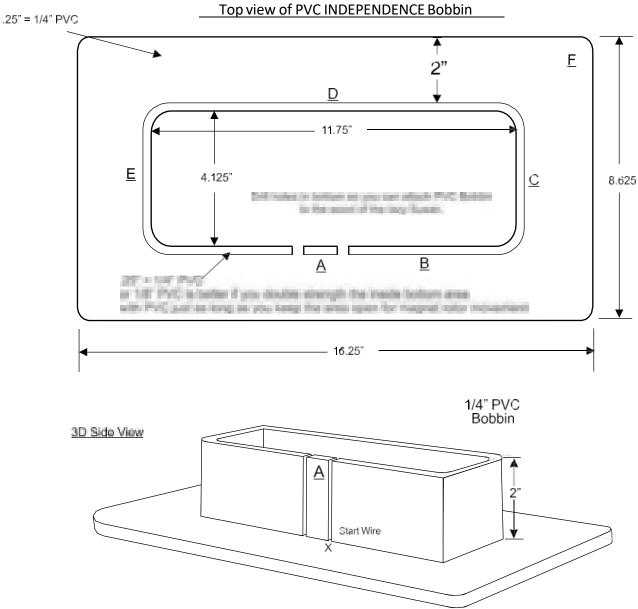

The more spiral coil layers you use the less rpms will be needed to generate the higher voltages. In these plans we are using #18 wire but if you use smaller wire (#15) you will gain more amperage output, but in turn the rpms will go up. To lower the rpms needed to get the desired voltage you want simply add more spiral coil layers.


The nice thing about this generator is that it's simple! You do not need commutator brushes as you do in many other DC or AC generators.

will be AC+ alternating current. The Hz will be AC+ alternating current. The Hz will depend on the speed of the magnet turning within the coils. If High Voltage DC is desired then simply add a high voltage diode rated at 2 times the amperage output of the generator and 2 times the voltage output of the generator. This generator is very high efficient and can be turned using Wind power, Water power. The Waldemarr Engine's (as seen on our web sites or catalog) or a gasoline type engine.



Page 10

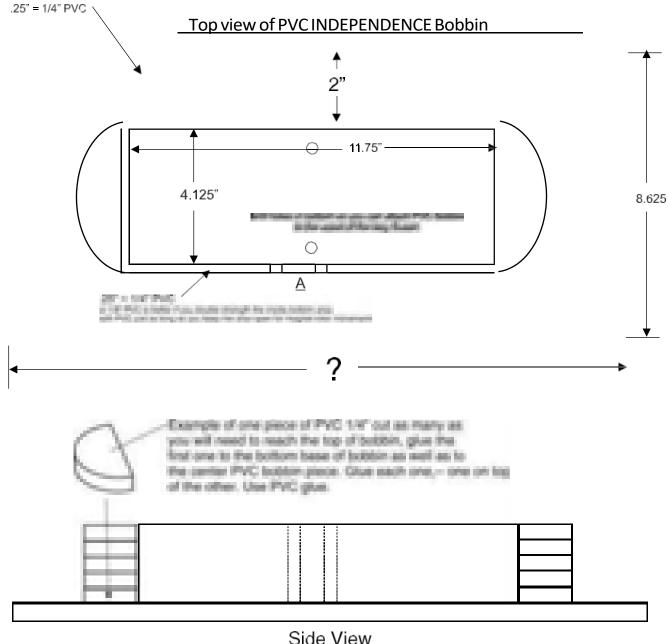


If you carefully study the generator coil and rotor magnet design you will see that it is very different from any other generator that is manufactured today! Most all generators today use copper coated wire wrapped around a soft iron core. As you can see we DO NOT use a soft iron core. Again as you can see we simply replaced the soft iron core which is stationary and common in all generators today and replaced it with a movable neodymium magnet core. Which is far better and more high efficient than using the stationary non movable soft iron cores. There is much more that we can explain as far as how our spiral generator coils work and function as well as there highest potentials, but for the sake of protecting our trade secretes we will keep this info to curselves. Anyway you do not need to know all the details to make this generator work! Simply study and follow the plans.

The spiral coil pancake array (generator coils) are made up of many layers of #18 coppes coated wire and are connected in series. Our first prototype coils were soldered in series, we soon found many better ways to connect the coils in series than soldering them, we found that it is best to simply make one long array using one wire, no need to cut the wire.

To start: Spin your first spiral coil layer, cost it with PVC plus or best to use 2 part epoxy. allow it to dry 2 hrs if you use epoxy, then prepare a thick paper that is the same thickness. as the wire. We then spray the top of the first coil layer with 3M spray adhesive and then the back of the paper separator, let stand for 2 to 3 minutes and then apply the paper to the top of the first coil layer. The paper will have a small slit in it so the 2nd layer lead wire can be sent through it, back through the center PVC bobbin and back out to start another 2nd layer spiral coil. This may seem confusing, but I am telling you this now just to give you an idea of what I will show you later, Before you can start spinning your spiral coil layers a PVC bobbin must be made. As well as a Bobbin coil turn table. For small coils we use our special homemade drill press as a coil spinner, we use a 90 vdc motor with controller to control the speed. But with these large of coils you can not use a drill press coil winder the coil bobbins are to big, so a large round wooden table with a Lazy Susan connected to the bottom must be used. The PVC bobbin will be taped with 2 way carpet tape to the top of the wooden Lazy Susan, and you will need to turn the entire structure by hand. Which is a very slow process. If you are good at making things it is best to automate it. You will want to use a 90 VDC conveyer belt motor with controller and a rubber wheel so the lazy Susan can be driven automatically. The lapy Susan should be about: 16" in diameter and placed on a work Salble Stop.

PVC Bobbin: If you are not very good at building things very accurately it maybe best for you to build the magnetic rotor first, and then build the PVC Spiral coil bobbin around it. So you make sure the notor magnet, will not hit the PVC bobbin or Copper wire loops that will be on the inside walls. Use a malt limit or a table saw with a fine blade to out the PVC pieces or You can make it square connected and then add round PVC or wood to the ends. There will be if pieces A - F, F is the largest and the boltom of the PVC bobbin. A & B can be glued as one piece and then out later. Out and glue as square pieces, not round edges as drawing shows. Drawing is just an example. You can round the corners later. Out and use the drawing measurements as your guite. Note: You can also make your open sits on side C as well to keep out of magnets reach.



Part R.A. The bottom will be glued the bottom of PVC button, but you may still want to use tape, and still carribound or wood as the top of a white you work the wire. Best to use small wood starts and to small apring toward clamps.

Page 13

Optional Oval Bobbin

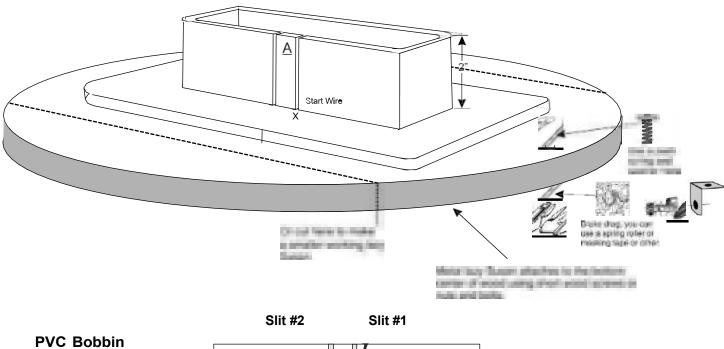
Optional PVC Bobbin: The prototype you see in the photo's and in these plans do not use the oval shaped Bobbin below. This is a much easier way to spin the copper wine around the center of air core bobbin. The wire works much better this way, but there is a small loss in magnetic flux. If you do it this way you will need to extend the generator size. But we are not going to provide plans for that, it's not that hand, simply move the generator's ends outward to make more room for the longer PVC Bubbin out. First build the rotor magnet assembly and then the PVC Oval Spirat Coll Bubbin and then the generator ends etc...

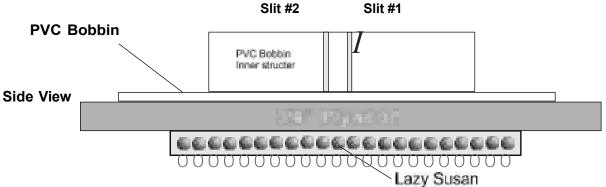
Side view

ASSEMBLY: Spiral Coll Assembly. Your PVC Bobbin should now be done and been allowed to dry for about 24 hrs. You will now need to make a cardboard slip cover for the center of the PVC bobbin, so when you spray the boltom of the PVC the center will be protected. Place your slip cover over the center of PVC bobbin, (WARNING! Spraying should be done in a well-ventilated area!) Now spray the top of the boltom of the PVC bobbin with 3M spray adhesive #77. Make sure to spray every inch of it. Let it dry for about 2 minutes and apply a 2nd coat. Let dry another 2 to 3 minutes and then remove the center slip cover and place the entire PVC bobbin on the center of your wooden Laxy Susan using 2 way tape or Veloro. Your #18 copper coated wire spool should be on a wood metal rod holder so it can be easily unrolled. You can make a wire spool holder out of 2 x 4's or plywood. (Or use 2 way carpet tape 3.

Now it's time to begin turning the wire onto the PVC Bobbin. Place the beginning of the wire in the start hole area, allow about 12" to come through the hole and tape it inside of the center of bobbin using masking tape. Now use a small plastic knife and push the wire down onto the sticky surface of the PVC bobbin and at the same time the wire should be pushed. snug up against the wall of the center of the bobbin, pull the wire with your right hand / applying a small force and sliding the plastic knills across the copper wire at the same time. Your applying force so it will stick to the sticky surface. If it does not then you purchased bad spray adhesive. If you find you have taking to long to spin the wire and the Adhesive has dried half way into it, then you will need to cover and protect the wire you have already laid down and place the Silp-cover back over the center (Do not cut the wire, take the spool of wire with you to your spray booth area) Then re-apply more 3M spray achiesive. Remove protective covers and finish the first spiral coil layer. Leave 1/8" space all around the end of the coil to the end of the PVC bobbin bottom. Now it is time to prepare for the 2nd layer. The top of the first spiral coil layer wire should be coated with IPVC glue (which dries fast): or a 2 part epoxy which is best but take hours to dry. Use a stiff but thin piece of card board or plastic to lay down the glue or epoxy onto the top surface. Use it like you would a pully knife make it as smooth and as even as you can. If you use 2 part epoxy you can wait 10 to 20 minutes and then apply your Die electric thick paper spacer. The Die electric spacer will go right on top of the spiral layer and

epoxy. Again the die electric spacer can be thick paper or plastic myter, Make sure what ever you use that it is the same thickness as the #27 copper coated wire. The Die electric spacer must have a slit in it and be lined up with the left side of the A bobbin slit so the wire can be guided on top of first spiral coil and back through the center of PVC ruc name bobbin so the whole process can be receated again.

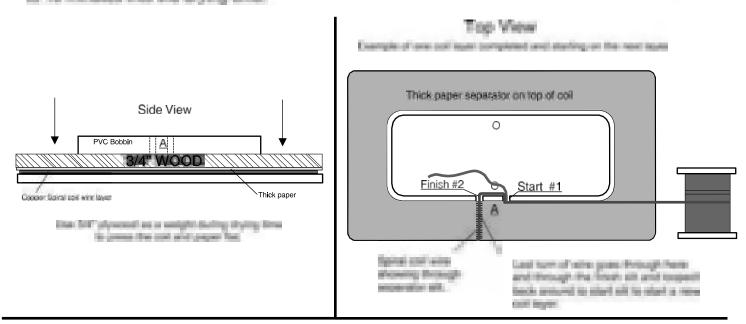

MOTICE

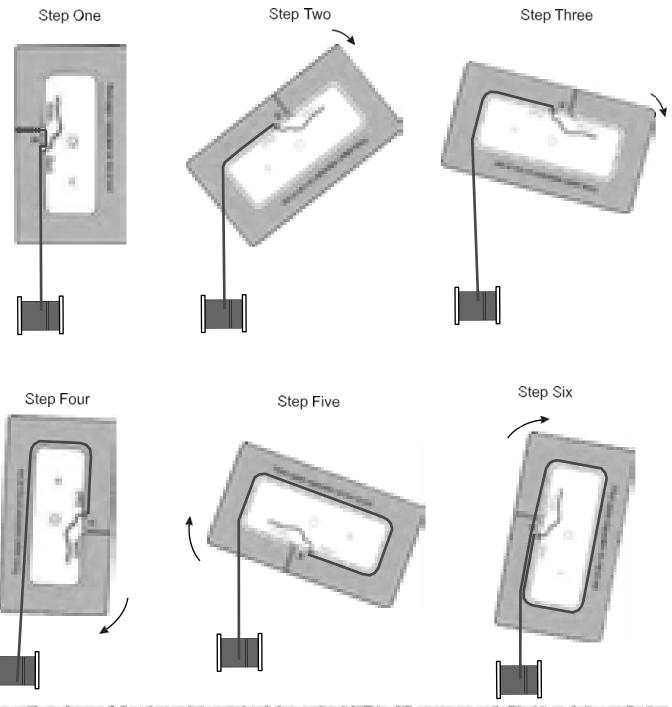

With each turn of wire there should be no space in between the wire making up thindpendence.

Notice: Optional - ou can use a thin layer of 2 part epoxy on top of your finished spiral layer and then apply your thick paper on top and then a 3/4 plywood weight and let dry overnight.

INDEPENDENCE Coil Construction

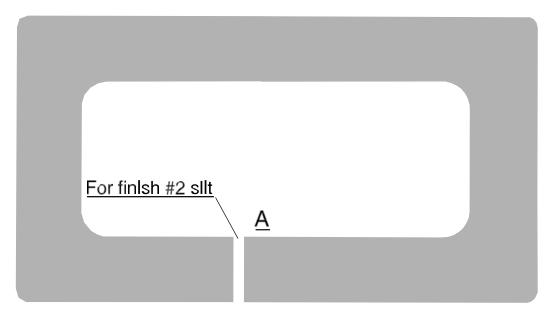
Use 2 way carpet tape or Veloro on the bottom of the PVC bobbin to attach it to the top of the wooden Lazy Susan so the bobbin will not move as you are spinning your spiral coil. A optional drag brace can be used to go through one side of the wood to keep the Lazy Susan from moving to freely.




Once you have spined your first layer coil and applied the egoxy and paper and you have allowed it to dry about 2 hrs you will now want to apray the top of the thick paper so you can restart another layer, repeat what you did before when you made your first layer. Remember the Thick paper must fit perfectly and around the inner bobbin structure of it's outer walls so the copper coated wire will not slip through any cracks between the paper and the PVC. TROUBLE SHOOTING: If adherive spray is not working use 2 way carpet tape, we have used both before. Spray adherive is great for small wire.

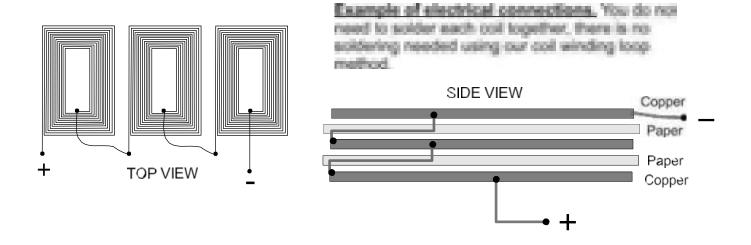
EPCXY OPTION: If you decide to use a 2 part epoxy to apply over each layer of your spiral coils, then it is best to use a 3H* plywood or 1H* metal weight to lay on top of the coil and thick paper separator during the 45 to 65 minute drying time. Epoxy dries to handle in 2 hrs. The epoxy should be getting hard and sticky in about 45 to 65 minutes. The weight will help the coil to stay flat and help keep the thick paper flat against the coil and epoxy and will insure that the thick paper sticks to the coil surface area. The result will be a very flat and uniform coil and paper layer, each layer should be done this way. Make the 3H* plywood or 1H* metal weight the same size and dimensions as the thick paper separator!

* NOTE: You can stick the thick paper separator on top of the coil and fresh epoxy at about 5 to 10 minutes into the drying time.

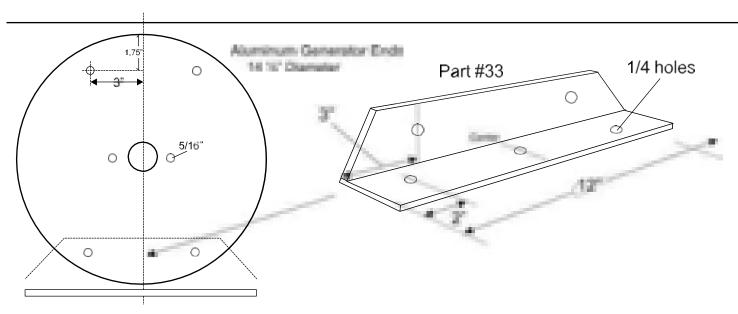


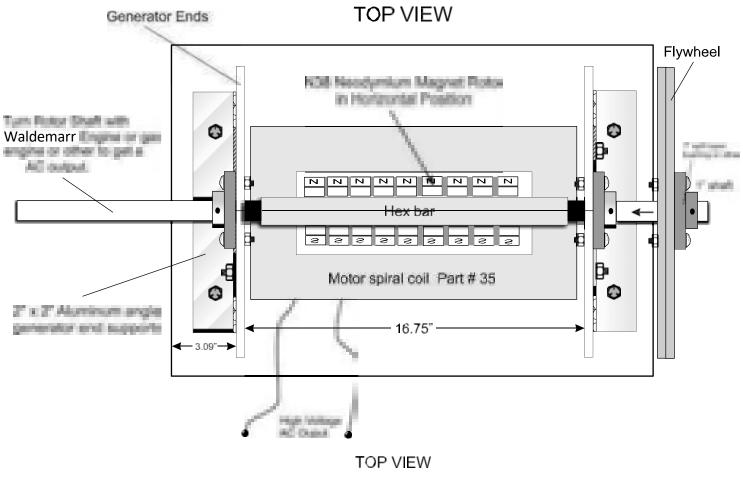
The thick paper separator can be drawn using Corel Draw or any other drawing and layout computer program. Design the layout to 100% size. And then print out on a printer Most people only have a printer that can print 8 % x 11° paper, so what you should do is to print out each half on 8 % x 11° past or tape it together and go to a copy center that has a copy machine which can print on 11° x 17° thick paper. Or better yet draw and layout the paper separator by hand on a master sheet of 11° x 17° thick paper copy it with a copier or out it out and make a drawing templet and trace all the rest using the master templet. The finished paper separators must be out very accurately just to a perfect fit for the center bottoin. If you have a space between the paper and the PVC botton the wire will stip into that space and that is not good. I would say for me making a very accurate templet would be the best way to go. (Another option would be to get a sign shop with a good sign machine that can draw the templet for you or the actual paper separators themselves, I have not checked but it should not cost much at all to have them do this for you.)

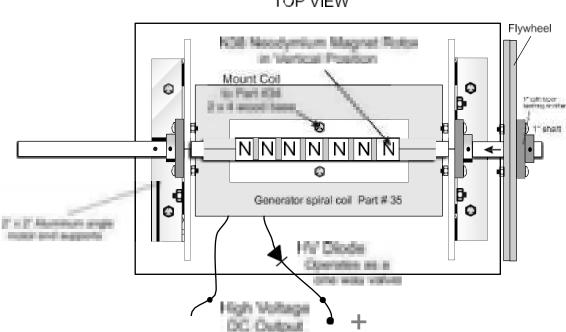
Continue until you have a full and complete spiral coll, leave about 116" to 15" space on end of lest turn, between the less were turn and the PVC bobbin bottom edge. Again after done, apply thin layer of epoxy on top of wire, let dry about 10 minutes, place thick paper on top of that, then 314' plywood weight. Let dry 2 hrs them remove weight, to start 3rd layer coll, toop wire through sits #1 and #0" and repest again. (Remember the frick paper must be the same thickness as the wire you are using or in this case #0" AMO copper coated wire. Repeat layers until you reach the top of bobbin).


Thick paper separator TOF VIEW

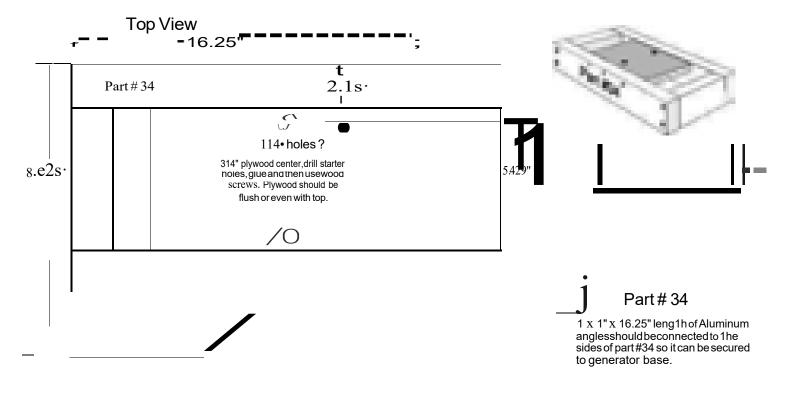
Note: Paper must be as thick as the copper coated wire you are using to make your spiral coils. Art supply stores carry many different types of thick paper.




Close up SIDE VIEW of paper silt for PVC silt #2, wire fits in between paper silt



Now that you have successfully completed your INDEPENDENCE generator array it would be a very good idea to test it. Using a volt meter with ohms and capacitance capabilities take an ohms resistance reading and write the results on top of the paper of the spiral coil, next take a capacitance reading and do the same. You will now need to weigh the entire spiral coil array and write that down as well. The height that we gave you should be enough to output a great deal of electricity and current. The coils will output AC current. If you need DC current simply add a diode rated at high amperage and 2 times the output voltage amount connected to one of the wire legs of the output of the coil. If you desire more voltage simply add more layers.

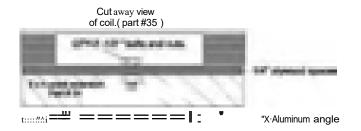


Assembly

Using wood screws or bolts connect rubber feet onto the bottom of 3/4" plywood base. Drill gty-2 7/16" holesinthe top portion of each aluminum generator ends or you can use fine cherry 3/4" plywood instead of laser cut aluminum. (14.25 D. Laser cut Aluminum can be expensive if you go to the wrong laser cutting shop). Place your 1" rotor hex shaft in the 1.10" D holes in the center of generator ends, now place your 1" bearings on the 1" rotor hex shaft on the outside (see drawings). Spread the ends 16.75" apart and mark the shaft with a black permanent marker where the center generator end starts onto the shaft. The center hole must be bigger so 1" Diameter -shaft will not rub up against the aluminum while the motor is running, you also want to get the shaft in perfect center of the 1.10" center hole of the ends so you can mark your flange bearing bolt holes with a black fine point marker. To get the 1" shaft in dead center use tape to fill in the space. Apply the tape to the rotor hex shaft itself and place through holes, they must fit tightly. Now mark your bolt holes and remove everything, the flange bearing and generator ends from shaft. Remove tape from rotor shaft. You will now need to drill all your holes. The flange bearing bolt holes must be dead center. Find the center of the circles you made. Some flange bearings come with square bolt hole areas this is for Carriage bolts. It is best to use a large flat bed drill press to drill your holes or you could let a machine shop do it, If not lay the ends on a flat table and use a small starter drill bit first to make sure you drill dead center. It is important that you get the 1" bearing in perfect center of the 1.10" hole(s). If you do not think you can do it then make your holes bigger so you can move the bearing around and adjust it by hand and tighten the bolts. If you use lock washers the bearings should not move after hundreds of hours of motor operation. Now take your 3/4 cherry plywood motor base and mark center lines on it. Now mark center lines on the aluminum motor ends as well as the aluminum 2" angles. Mark 3" from the left side of the 3/4" plywood base (the left side would be the side that the commutator is on). Now mark 1/4" after that, that's for the 1/4" thick generator end, now mark 16.75" = 16 3/4" (Coilarea see drawings). Now mark all drill holes that will be needed to mount the 2" x 2" aluminum angle (part #33) to the ends and 3/4" plywood base. Make sure you make everything as dead center and as accurate as you can get. Generator ends must be parallel with each other or the Rotor will drag. The top of generator rotor can be adjusted with the long bolts to eliminate drag. Now attach your 2" aluminum angle to the 3/4" Plywood base using 1/4" x 1 " bolts and nuts. Now bolt the left *generator* end to the left 2" aluminum angle. Place the 1" hex shaft into center hole. Connect flange bearings to both ends, do not tighten bolts all the way yet. Place the right *generator* end onto the right end of rotor shaft, bolt the both ends to the 2" angles using 1/4" x 1" bolts, washers and nuts. You can use lock washer also if you like. Tighten the left side of generator end first and then adjust and measure the right end to the left *generator* end so they *are* perfectly parallel with each other. Place the long bolts and nuts in the top (see drawings). Tighten all bolts and adjust top long bolts until the 1" hex rotor shaft moves freely! Drill holes for your flywheel mounts. Flywheels must be laser cut. Mount flywheels onto the right side of rotor shaft using 1" split taper bushings or 1" collars. Taper bushings can be purchased at grainger.com. Part # 3A147, (4" steel pulleys can be used to attach to flywheels also, but you will need to drill holes to make them work.

2 X 4 wood extension frame part #34

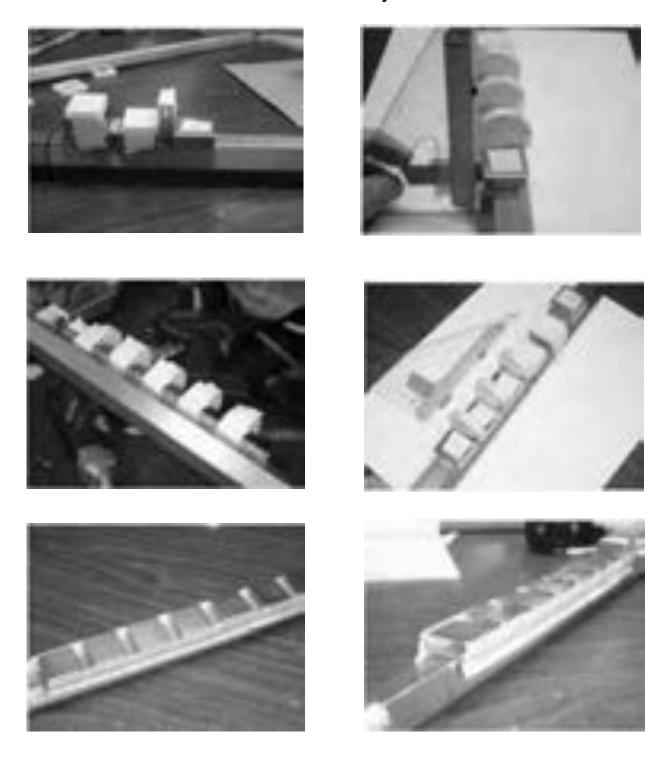
Used to hold up and brace the generator coil. (Spiral coilarray part #35). You will need a table saw (best to use) or other to cut the 2×4 "frame. 2×4 " wood is a US wood size. The wood is not really 2" x 4" thick is less. Anything you have close to it will work as long as it is sturdy, you could even use thick aluminum, (NO Steel) Again please note we are just showing you somewhat how to build our prototype model do not let that limit your artistic thinking. No doubt you could improve on it J we already have).



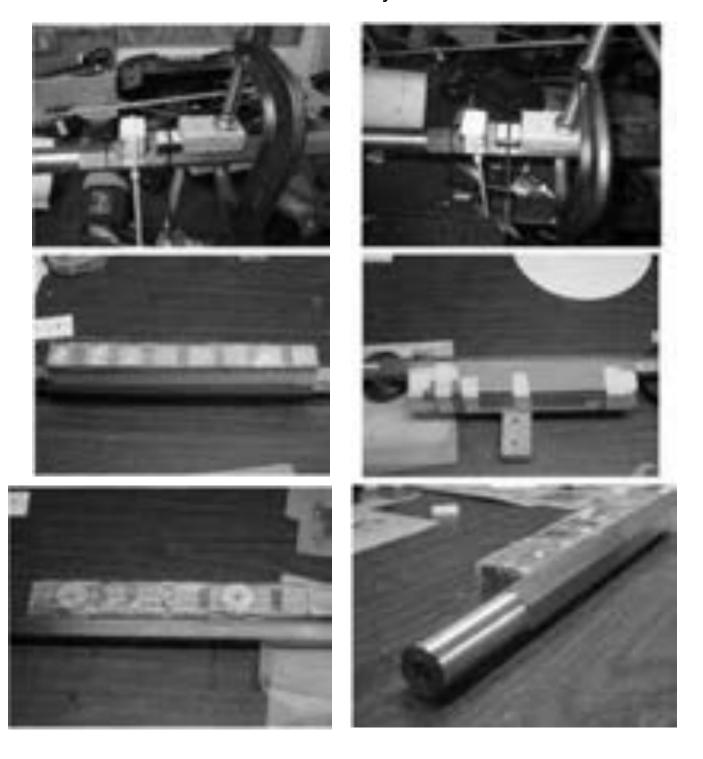
114 woodnuts?

These wood nuts are hammered behind the hole and through it. Iam not sure of the hole size. So buy the nut first and then size it up and drill your bolt holes. These wood nuts can be purchased at most hardware stores or on the internet. Try www.AceHardware.com

Drill holes in bottom of 1/4" PVC part #35 spiral coil bobbin. Drill the holes a hair bit larger so the coil can be adjust to fit around the rotor magnets. Or drill this type, but still make width of hole a hair bit larger than bolts.

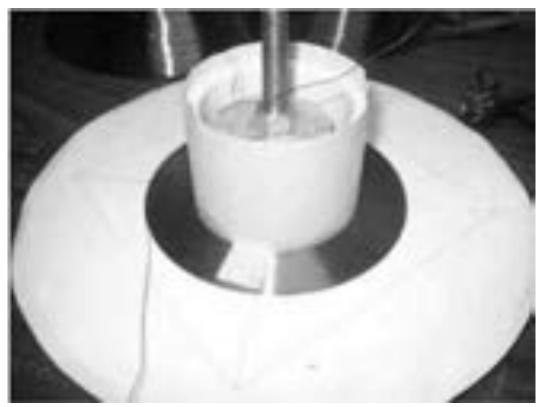

Line up part #35 and Part # 34 one on top of the other and attach % "holding bolts and nuts. Use short wood screws to attach to 3/4" wood motor base. Use %"x %"aluminum angle. Assembly option: In order as so, 1st Left generator end and bearings, 2nd-Part #'s 34 & 35, 3rd rotor magnet assembly (when done), 4th right motor end assembly.

Rotor Shaft & Magnet Assembly


Now it's time to assemble the hex rotor shaft and magnet assembly. You will work on the north pole side of the rotor shaft first. You can find the north pole of the magnets by using a compass. Use a very fine point permanent marker and mark each magnet with a small N. Care must be taken when handling these magnets! read all safety instructions your Neodymium magnet supplier gives you. Use protective eye wear. These magnets are hard to handle so you must take your time. It is a slow day by day process. It is easier to use a 1" flats hex bar, the magnets fit right onto it. If you decide to use a 1" hex bar { that's 1" across the flats) you will need to resize and design the spiral coil air core bobbin. { the rotor assembly will be wider). We use N38 Neodymium magnets, it's best to use N40 but they are much more expensive and harder to work with. Neodymium magnets are the most powerful permanent magnets in the world! 1" x 2" magnets can be used as a 2nd option. You will be using 2 part Devon epoxy. { a 2nd option is to glue magnets with professional magnet motor glue and then epoxy the air spaces. Special glue is called LOCTITE 7649 and LOCTITE 326 it is a 2 part as well. We did NOT use this on our first prototype and motor is running very well so far). The hex bar ends must be taken to a machine shop and lathed down to 1" { see parts and supplies.) Sand the hex metal were the magnets will be glued to. Clean with a Lacquer thinner or other. Hands and work area must be very clean! Mark the area's were the magnets will be placed. Each magnet will have a 3/8" space in between each one. Use metal washers as seen in the pictures. No need to glue the bottoms of the magnets just place them in place and apply glue to the bottom side areas first. You will want to clamp the hex bar down or tape it so it will not move. Placing the magnets: Use both hands, left hand on your right wrist, right hand holding magnet and slowly come at the hex bar were magnet will lay, Come in at an angle, you do not want the magnets to snap to the surface with all the magnets force, you must hold back some of that force and help slide it into place. Magnets can break and shatter! Start with your first magnet, line it up dead center and glue it very well with epoxy, { glue sides only at this time the front were washer spacer will be). Let dry 2 hrs and tape plastic or cardboard on top of the magnet so when you start your next magnet the next magnet will not try and attract to the north side of the first magnet, if this happens simply slide the magnet off side ways and try again.

Use 5 washers to equal a 3/8" thickness { as a spacer, make qty-6 of these)... Place 2nd magnet onto hex bar and glue sides. Repeat until you get one whole row of 8 magnets in line. Now you can glue the air spaces in between the magnets. Let dry overnight and then start your 2nd row, until you have 3 rows of 8 stacked on each other and glued very well. Always keep in mind the rotor must be as well balanced as you can make it. The rotor will be turning at very high rpms, if it is off balanced the entire generator will vibrate and can vibrate parts loose. See the following pictures on the next pages. The pictures are self explanatory. Study this page well as well as the pictures before you try and attempt to glue the magnets into place. Use tape as wall molding to keep the 2 part epoxy in. Make sure there are no holes in tape or the epoxy will leak out. Once you have finished the north pole side use masking tape and card board to protect it from damage or other magnets coming in contact with it when you start the south pole side.

Rotor Shaft & Magnet Assembly

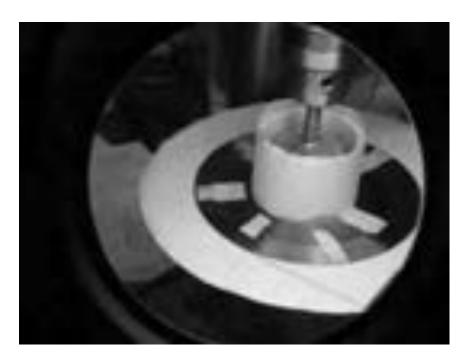


Rotor Shaft & Magnet Assembly

As an example here is a small round disk type spiral coil being turned and assembled. Iwish we had the bigger coils to show you but we do not have assembly photo's. The photo to the right shows the PVC pipe in center and 1/8" PVC pipe sheeting on the bottom under the thin paper. The paper isglued onto PVC sheet using 3M spray adhesive. The light brown paper is covering the PVC pipe so we can spray the top of the paper and not get any over spray onthe PVC pipe. Of course the PVC pipe is already glued to the PVC 1/8" thick sheeting using PVC glue.

#27 Copper coated wire being wound ontopof the sticky paper.


INDEPENDENCE LOW RPM GENERATOR


Walter Coil Technology - Palest Panding

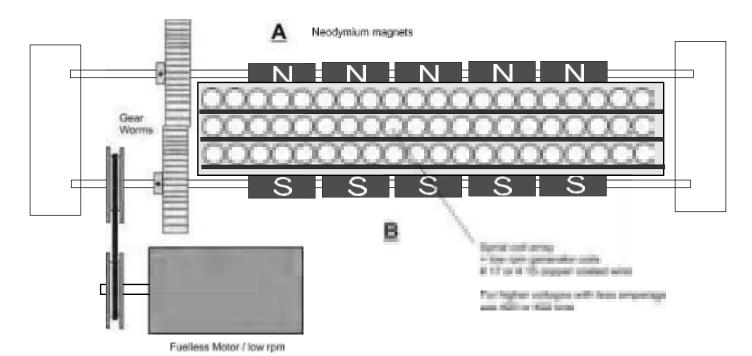
For added protection, (so the wire does not come up) we use small peices of maskings tape to keep the wire in place.

The center bolt is connected to a small low rpm drill press, but because we are using smaller wire we turn the drill press pulley with our right hand (manually) as we guide the wire in place using a thin plastic or metal object and press down on the wire as we turn the drill press so the wire will stick to the sticky surface of the paper.

Using bigger wire such as #15 or #18 awg is much better to work with and is great for generator use.

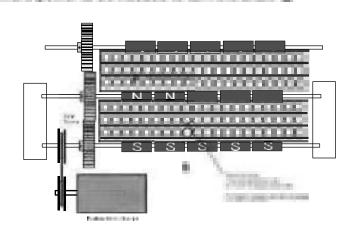
WARNINGICONFIDENTIALINFORMATION

One of smaller prototypes used paper instead of Myalr



New Independence Constant Upgrade

This is a better way of getting more power out of the coils then using only one spinning magnet array. Here we are using 2. A magnets spin at the opposite time as **B** magnets. If the worm gears and timing of the magnets are done correctly, the generator will have very little (no load) resistance.


By using 2 sets of spinning magnets the electrical output of the generator coil is doubled. (and could be more than that!) And the amperage is doubled as well. This is a very high efficient way of producing electricity.

It maybe possible to stack more on top of each other to increase the power and voltage. But pears would have to be timed just right. This should not be a problem. To Time: loosen each hex bolt on the gears connected to sharts. Allow all magnets to alien with each other, then tighten the hex bolts on each pear and the magnets and sharts should be perfectly timed. If they are not timed just right

a mannelic registance will corner causing more power to be registed to burn the shaft. B.

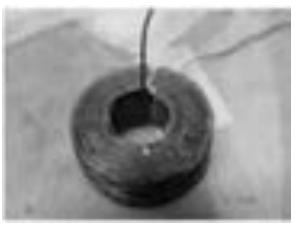
The generator can be stocked with many coil sectional Imagine a 4 feet high generator array. Yeary low-rpm and a very high-output with a very high efficiency output.

Model#3LowRpmGenerator

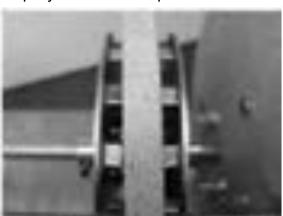
This type of generator is very high efficient as well.

This is a small prototype that we built whichworkedvery well. Best to use large diskshaped N38 or N40 neodymium magnets.

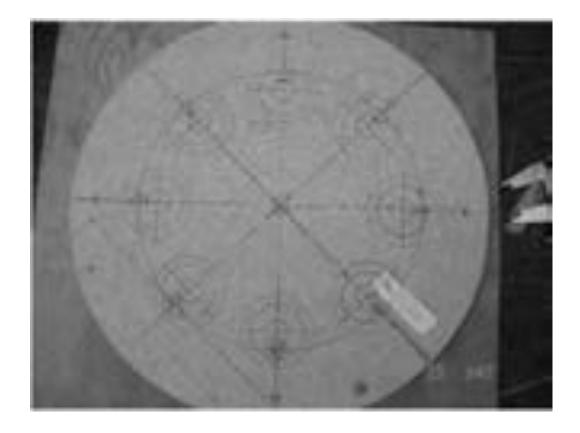
The photo to the left is one of the 1/4"x magnet disks being prepared for the magnets. We drilled holes all the way around the top of disk so epoxy will fill and bond magnets into place better. Mark lines by scratching with exact oknife. Prepared a papertemplet on computer.

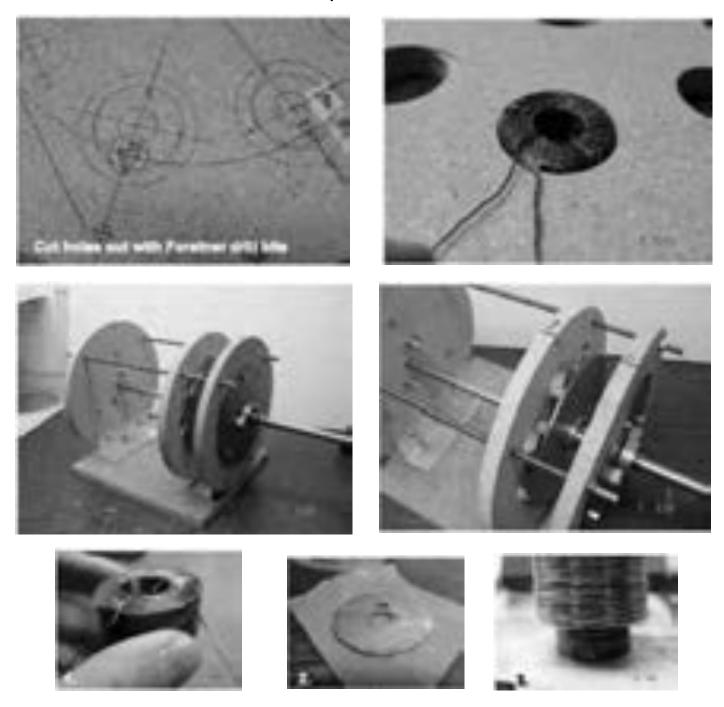

Model#3 Low Rpm Vortex Generator

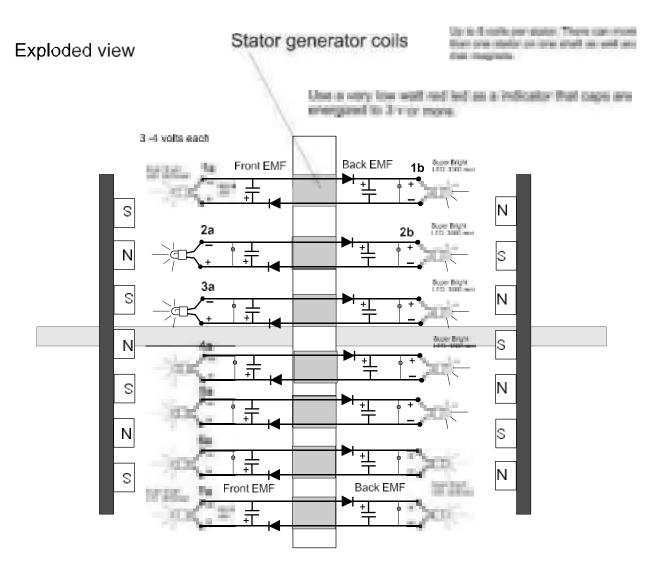
%"wood, for holding generator coils


Coilwinder removable bobbin. For manual turning on a drill press. Epoxied each layer.

#17 copper coated wire air coilwith 2 part epoxy. Coils arethen epoxied into wood holes.



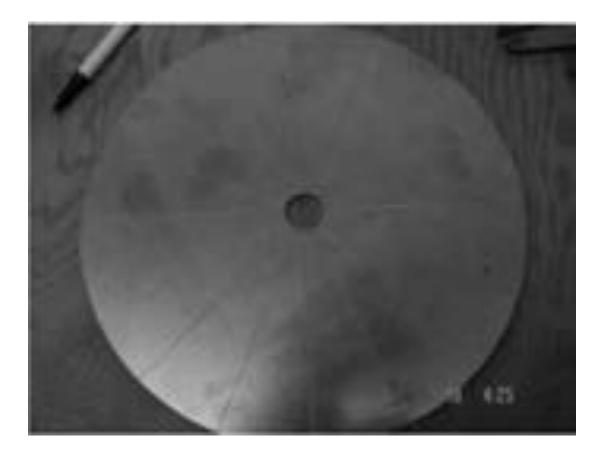

Model#3 Low Rpm Vortex Generator



Model#3 Low Rpm Vortex Generator

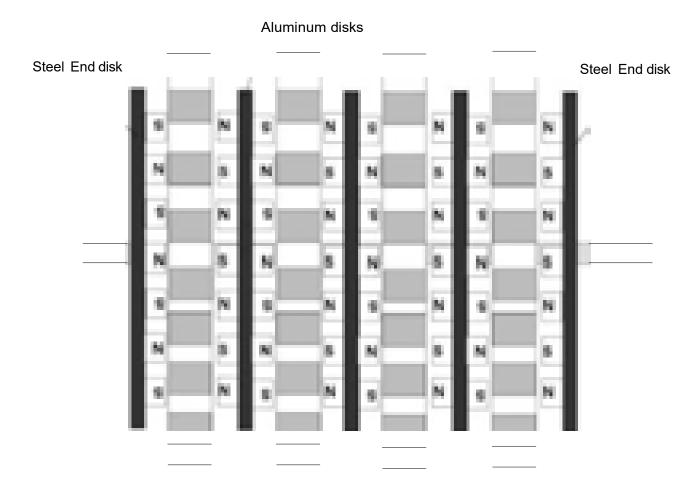
Use wax paper and adhesive spray for Bobbin end pieces, so epoxy will not stick to bobbin when winding wire and applying epoxy. #3, usewax paper and heavy weights to flatten coil while epoxy is drying.

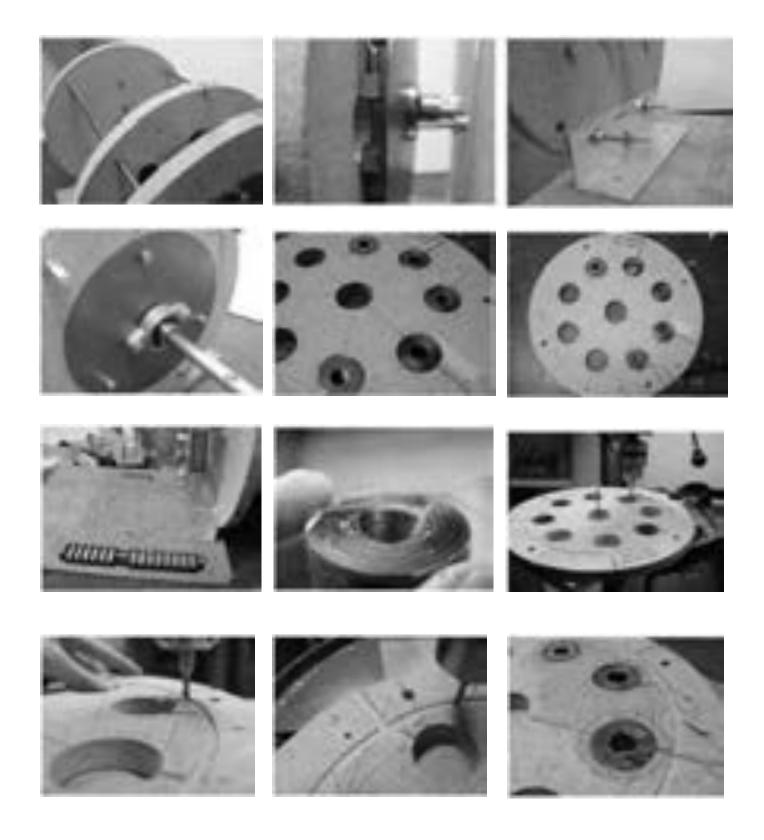
Model # 3 Low Rpm Vortex Generator


Great as outdoor or indoor super high efficient lighting. Up to 16 lights or the back end of to can be redirected to charge 2a, and 2b can be directed to charge 3a etc. This would help speed up the charge time of the large caps. I am using 5 volt x 150,000 MF powercap type 850 99y-8430 made in USA made by NATIONAL CAPACITOR Garden grove california. I am using zerior diodes I am not sure of the voltage rating or ampers as a rating. (may be 1 amp diodes 7)

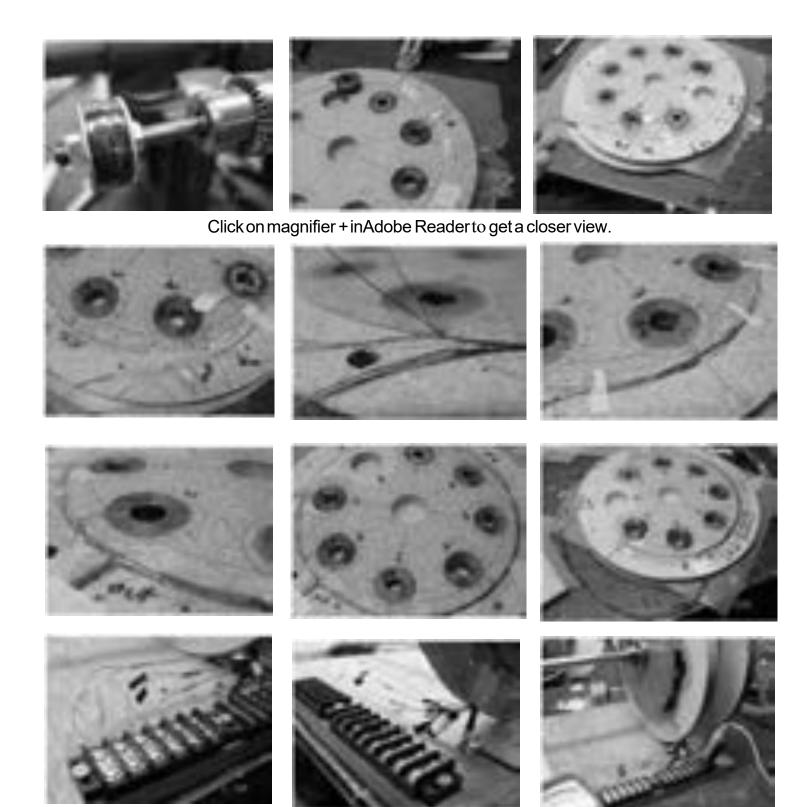
The Rotor disks can be ran by a small waldemarr engine 10 ms x 1200 7 This would make for a great way to provide super cheap indoor or outdoor emergency lighting. The whole system could test for 70 years. Another use would be to use this generator to help run a fueless engine. The white LED lights would be removed and the caps connected in series to bring the voltage up to 15 to 20 volts. This can then be directed teach to the 12 volt deep cycle liattery which runs a 70 walt inverter that in turns runs the HV multiplier 1200 v which runs fueless engine. The fueless engine maybe able to be made to run at 100% unity or over unity if the back EMF of motor is used to turn the south pole after the north pole is turned by the front EMF. The back EMF can be timed and switched on using a 2nd 5W commutator. Use a diode and capacitor to collect the bak EMF to charge cap, then discharge cap into coil using a 2 n d i o d ii.

Model#3 Low Rpm Vortex Generator





Model # 3 Low Rpm Vortex Generator


By using multi coils and multi magnet disks makes this a very powerful low rpm generator Each coil will have its own capacitor and diode. Researching the best diode and capacitor to use still needs to be done. Iam using N38 neodymium magnets (cube type) %"x %". By using aluminum disks for the double back to back magnets gives greater flux as each magnet strengthen the other which creates more electricity and amperage.

By using a round disk magnet n38. The same size diameter as the coils. Will give a far better output of power and electrical energy!

Page 39

Page 40